

CBTM

Communications Based Train Management

October 23, 2002

CBTM Status

- CSX has entered into a service agreement with Wabtec, to keep CBTM working as a pilot system
- Full-time Field Service Engineer in Spartanburg
 - Responsible for monitoring and troubleshooting locomotives and wayside equipment
 - Represents CBTM to CSX personnel
- Data Gathering
 - Evaluate performance
 - Determine requirements for a production system
- Crew acceptance continues to be positive
 - Issues with braking algorithm

CBTM Performance

Safety Enforcements

- Failed to hear audible warning
- Warning time to enforcement not sufficient
- Use of default consist

System Issues

- Communications: coverage; on-board radios
- CADS Interface: downtime; database corruption

2001 Performance Improvements

- Retain track database on-board
 - Speeds up initialization process and reduces communication
- Upgrade of the VHF Radio software
 - Increases the performance and reliability of the RF communications

CBTM Business Case

- Rail Sciences, Inc (RSI) completed an economic evaluation of CBTM in July, 2001
- RSI concluded that:
 - of all the existing or planned PTC installations, CBTM has the strongest cost justification;
 - CBTM minimizes the technical risk, which lowers its delivered cost;
 - in addition to safety, CBTM provides significant operational and cost reduction benefits relative to its cost

CBTM Drivers

CBTM can drive improvements in:

Safety

 Prevention of collisions, enforcement of speed limits and protection of work authorities

Operational Benefits

- Reduced operating delays
- Increased velocity due to more efficient meets and passes
- Time savings for dispatchers and crews
- Capital avoidance

Signal System Retirement

 Elimination of TCS from low-density lines resulting in avoided maintenance costs

Process Changes

Issuance and release of movement authorities

CBTM Revised Cost Estimate

- Wabtec completed a detailed cost analysis in May 2002
 - Revised cost estimate is based on their efforts to develop:
 - production hardware and software for CBTM;
 - the onboard platform for the the IDOT Project

			•
	Cost	com	parison:
,	0031	COIII	parison.

July 2001

August 2002

One Time Implementation:

\$351.9M*

\$199.0M

- 2.7K Locomotives (\$15K vs. \$24.4K each)
- ~15.0K Miles of Track (\$20K vs. \$8.3K per mile)
- 5% Contingency

Recurring Annual Cost

\$1.8M

\$10.9M*

^{* -} includes training

CBTM Potential Benefits

- RSI updated their economic evaluation of CBTM based on the revised cost estimate
- CBTM Economic Evaluation showed an increase in the ROI from hard benefits from 18% to 30%
 - (velocity, safety, avoided maintenance costs and capital investments)
 - ROI from hard benefits on selected subdivisions is even higher

2002 CBTM Enhancements

Display replacement

 Replace current monochrome display with a full color, integrated display

Digital Display of Authorities

- Allows the dispatcher to issue and extend authority digitally, without verbally contacting the crew
- Allows the crew to view and release movement authorities digitally from the locomotive cab

2002 CBTM Enhancements

- Locally Controlled Power Switches are operated by the crew from the cab of a locomotive
 - Design has utilized alternative methods to satisfy the requirements for signals, which are typically associated with power switch installations

Benefits:

- Eliminates the need for crews to physically throw the switch
- Reduces the time required during meets
- Increases average train velocity
- Reduces the risk of crew injury

2002 CBTM Communications Enhancement

- Install a UHF ATCS network on approximately 50 miles of the current CBTM territory to operate in parallel with existing VHF infrastructure
 - Allows CBTM to be designed, developed and tested using the ATCS Spec 200 protocol
 - CBTM can then leverage the infrastructure already installed for radio code lines
 - Installation in non-signaled territory to support CBTM enables other applications to become less dependent on commercial services

ATCS Additions

- CSXT track in pilot territory
- Current pilot is VHF
- Add UHF ATCS
 Spec 200 data
 network
 between
 Spartanburg
 and Irby

Powered switch installations at both ends of Kilgore siding

2002 CBTM Enhancements

 Wabtec is providing matching funds to address system reliability by migrating CBTM to a production ready platform

Goal is to demonstrate benefits outlined in business case

Production Ready On-Board Platform

- Required to support locally controlled power switches and digital display of authority
- Improved maintainability and reliability
- Development includes:
 - Hardware
 - Display
 - Processor
 - Locomotive interface
 - Data radio
 - Software development
 - Lessons learned
 - Additional features

Hardware Changes

- Replace TransitMaster display with New Display
- Supplement IFC / Event Recorder interface with IFC / Electronic Air Brake interface
- Replace RDR-160 with MCP
- Replace "Pizza Box" with On-Board Processor
- Separate Locomotive ID module
- Replace brake interface relay with brake interface module
- Replace Sonalert ™
- Replace power supply
- GPS Receiver and Antenna Potential Replacement

On-Board Platform Safety Considerations

- On-board platform activity is:
 - Re-hosting existing system on new hardware
 - Re-partitioning software objects
 - Re-implementing existing functions
- This is not a fundamental change in CBTM system, scope or functionality
- The new on-board platform does not require safety activity beyond that performed for the pilot
- Additional safety activities will take place for Power Switch and DDA, since these are beyond the scope of the original system

System Design Process

Requirements

- Reflect lessons learned from CBTM pilot and Eastern Project
- Address CSXT issues list
- Incorporate new features and previous functional specification efforts
- Produce documents useful to the development team, no paper for paper's sake
- Retain applicable documentation from pilot project

Design

- Support production ready on-board platform
- Simplify architecture
- Allow for the addition of new functionally

Development

- Phased approach
- Incremental verification (following Wabtec standards)

Test

- Utilize both lab and field testing

Document Tree

Test Strategy

- Evaluate system against the functionality described in the System Requirements Specification
- Two overall types of tests
 - Lab tests
 - Demonstrate conformance with system requirements
 - Field tests
 - Perform a subset of lab tests modified for field environment
 - Demonstrate elements that can't be tested in the lab
 - Communication via actual data network
 - System interface with an actual locomotive
 - Speed and location accuracy
 - Stopping distance accuracy

Lab Test Environment

Safety Summary

- CBTM Program is following the safety process outlined in the NPRM
 - Define hazards
 - Demonstrate mitigation
 - Peer review
 - Trace requirements through test
- Not creating Product Safety Plan (PSP) at this time
- Producing a Safety Compliance Document
 - Documents the performance of this safety process
 - Demonstrates prudent efforts have been taken to ensure safety of the system
 - Contain portions of PSP as defined in NPRM
- Can build a PSP later